Regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase by the cyclic AMP-protein kinase A signal transduction pathway.
نویسندگان
چکیده
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the presence of Sch 28080 to block ouabain-sensitive H(+),K(+)-ATPase and improve specificity of the assay. Dibutyryl-cyclic AMP (db-cAMP) administered at a dose of 10(-7) mol/kg per min and 10(-6) mol/kg per min increased Na(+),K(+)-ATPase activity in the renal cortex by 34% and 42%, respectively, and decreased it in the renal medulla by 30% and 44%, respectively. db-cAMP infused at 10(-6) mol/kg per min increased the activity of cortical ouabain-sensitive H(+),K(+)-ATPase by 33%, and medullary ouabain-sensitive H(+),K(+)-ATPase by 30%. All the effects of db-cAMP were abolished by a specific inhibitor of protein kinase A, KT 5720. The stimulatory effect on ouabain-sensitive H(+),K(+)-ATPase and on cortical Na(+),K(+)-ATPase was also abolished by brefeldin A which inhibits the insertion of proteins into the plasma membranes, whereas the inhibitory effect on medullary Na(+),K(+)-ATPase was partially attenuated by 17-octadecynoic acid, an inhibitor of cytochrome p450-dependent arachidonate metabolism. We conclude that the cAMP-PKA pathway stimulates Na(+),K(+)-ATPase in the renal cortex as well as ouabain-sensitive H(+),K(+)-ATPase in the cortex and medulla by a mechanism requiring insertion of proteins into the plasma membrane. In contrast, medullary Na(+),K(+)-ATPase is inhibited by cAMP through a mechanism involving cytochrome p450-dependent arachidonate metabolites.
منابع مشابه
O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملIsoform specificity of Na-K-ATPase-mediated ouabain signaling.
The ion transporter Na-K-ATPase functions as a cell signal transducer that mediates ouabain-induced activation of protein kinases, such as ERK. While Na-K-ATPase composed of the alpha(1)-polypeptide is involved in cell signaling, the role of other alpha-isoforms (alpha(2), alpha(3), and alpha(4)) in transmitting ouabain effects is unknown. We have explored this using baculovirus-directed expres...
متن کاملInvolvement of cAMP/cAMP-dependent protein kinase signaling pathway in regulation of Na+,K+-ATPase upon activation of opioid receptors by morphine.
The depolarization of neurons induced by impairment of Na+,K+-ATPase activity after long-term opiate treatment has been shown to involve the development of opioid dependence. However, the mechanisms underlying changes in Na+,K+-ATPase activity after opioid treatment are unclear. The best-established molecular adaptation to long-term opioid exposure is up-regulation of the cAMP/cAMP-dependent pr...
متن کاملRole of cAMP-PKA-PLC signaling cascade on dopamine-induced PKC-mediated inhibition of renal Na(+)-K(+)-ATPase activity.
We studied the molecular events set into motion by stimulation of D(1)-like receptors downstream of Na(+)-K(+)-ATPase, while measuring apical-to-basal ouabain-sensitive, amphotericin B-induced increases in short-circuit current in opossum kidney (OK) cells. The D(1)-like receptor agonist SKF-38393 decreased Na(+)-K(+)-ATPase activity (IC(50), 130 nM). This effect was prevented by the D(1)-like ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2003